Testfile

Testfile

COLLABORATORS
TITLE :
Testfile
ACTION NAME DATE SIGNATURE
WRITTEN BY April 15, 2022
\ REVISION HISTORY
NUMBER DATE DESCRIPTION NAME

Testfile iii

Contents

1 Testfile 1
I.1 Table Of Contents i i 1
1.2 popupmenu.library/--background-- 2
1.3 popupmenu.library/--hooks-- L e 2
1.4 popupmenu.library/PM_AbortHook e 3
1.5 popupmenu.library/PM_AlterState e 4
1.6 popupmenu.library/PM_EXLStA L 4
1.7 popupmenu.library/PM_FilterIMSZA e e e e e e 5
1.8 popupmenu.library/PM_Findltem e 6
1.9 popupmenu.library/PM_FreePopupMenu L 6
1.10 popupmenu.library/PM_GetltemAttrsA o e e 7
1.11 popupmenu.library/PM_GetVersion i e e e e e e 7
1.12 popupmenu.library/PM_InsertMenultemAo 8
1.13 popupmenu.library/PM_ItemChecked 9
1.14 popupmenu.library/PM_LayoutMenuA L e e 9
1.15 popupmenu.library/PM_MakeIDListA e 10
1.16 popupmenu.library/PM_MakeltemA oL 11
1.17 popupmenu.library/PM_MakeMenuA 14
1.18 popupmenu.library/PM_OpenPopupMenuA e e e 14
1.19 popupmenu.library/PM_ReloadPrefs 16
1.20 popupmenu.library/PM_RemoveMenultem 16

1.21 popupmenu.library/PM_SetltemALrsA L e e 17

Testfile 1/18

Chapter 1

Testfile

1.1 Table Of Contents

TABLE OF CONTENTS

—-—-background—-
——hooks—-
PM_AbortHook
PM_AlterState
PM_ExLstA
PM_FilterIMsgA
PM_FindItem
PM_FreePopupMenu
PM_GetItemAttrsA
PM_GetVersion
PM_InsertMenultemA
PM_ItemChecked
PM_LayoutMenuA
PM_MakeIDListA
PM_MakeItemA
PM_MakeMenuA

PM_OpenPopupMenuA

Testfile 2/18

PM_ReloadPrefs
PM_RemoveMenultem

PM_SetItemAttrsA

1.2 popupmenu.library/--background--

PURPOSE
The popupmenu.library provides developers with an easy way of adding
user configurable popup and pulldown menus to their applications.

COPYRIGHT
The popupmenu.library is ©2000 by Henrik Isaksson.

1.3 popupmenu.library/--hooks--

CALLBACK HOOKS
Callback hooks are used by popupmenu.library for several purposes,
including handling of localized strings, handling of user input (ie.
menu selection) and building dynamic menus. All of theese hooks have
some things in common, and they will be described here.

For general information about callbacks hooks, see the
utility.library documentation and utility/hooks.h.

When a callback hook function is called by popupmenu.library, the
register contents are as follows:

o a pointer to the functions hook structure is in AO.

o0 a pointer to the affected object is put in A2. This is usually a
struct PopupMenu pointer. Some future functions may use other
objects.

0 a pointer to an array of arguments is passed in Al. Theese are
specific to each hook.

EXAMPLE

/* First we declare the function: =/
/+ Note that the keywords _ _asm, __ saveds, register, etc. are =/
/+ specific to SAS/C. x/

ULONG __saveds __asm MyPMHookFunc (
register __a0 struct Hook xhook,
register __ a2 struct PopupMenu xpm,
register __al APTR =xargs)

/* hook = pointer to the hook structure declared below. x/

Testfile 3/18

/+ pm = pointer to the item that the hook function call =/
/ * is caused by. */

/* args = array of arguments. */

/* Example: You want to access the first argument which is x/
/ * an ULONG. */

ULONG argl = x ((ULONG =*)args[0]);

/+ Second: Filling out the Hook structure. =/
struct Hook MyPMHook;
MyPMHook.h_Entry = (HOOKFUNC) MyPMHookFunc;

/+ Now you can pass the structure as a pointer to one of the «/
/* popupmenu functions. x/

SEE ALSO

PM_MakeItemA (), PM_OpenPopupMenuA (), utility.library/CallHookPkt (),
<utility/hooks.h>

1.4 popupmenu.library/PM_AbortHook

NAME

PM_AbortHook —-- Find out if user wants to abort menu operation. (V9)
SYNOPSIS

abort = PM_AbortHook (handle) ;

DO \0)

BOOL PM_AbortHook (APTR) ;

FUNCTION
This function is used to find out if the user has moved the mouse
pointer outside of the region which opens the menu. It should be
called periodically (as often as possible).
PM_AbortHook () may redraw the menu when it is called, if the delay
since last call has passed a certain treshold (default is 80 ms).

INPUTS
handle - pointer to private data passed to the hook function through
a pointer in Al.

RESULT
Returns TRUE if you should stop doing whatever you are doing, and
return.
If FALSE is returned, Jjust keep on like nothing happened.

EXAMPLE

struct PopupMenu * __saveds __asm SubConstructFunc (
register __a0 struct Hook =xhook,

Testfile 4/18

register __a2 struct PopupMenu =xselected,
register __al APTR xhandle)

BOOL abort=FALSE;

do {

/+ Do something to the menu */

abort = PM_AbortHook (xhandle); /x Abort? =x/
} while (!abort);

SEE ALSO
PM_MakeItemA (), <libraries/pm.h>

1.5 popupmenu.library/PM_AlterState

NAME

PM_AlterState —- Simulate a (de-)selection of a checked item. (V5)
SYNOPSIS

PM_AlterState (base, ids, action);

Al A2 D1

void PM_AlterState (struct PopupMenu #*pm, struct PM_IDLst =xids,
UWORD action);

FUNCTION
This function will change the state of checkable/mx items in the
list ’ids’, depending on their kind (exclude/include/reflect/inverse)

and the value of 'action’.

INPUTS
base - pointer to a PopupMenu structure.
ids - linked PM_IDLst list.

action - either PMACT_DESELECT (2) or PMACT_SELECT (3).

1.6 popupmenu.library/PM_ExLstA

NAME

PM_ExLstA —— Build a list of ID numbers for mutual exclusion. (V6)
SYNOPSIS

list = PM_ExLstA (id);

DO Al

list = PM_ExLst (idl, ...);

struct PM_IDLst *PM_ExLstA (ULONG xid);

Testfile 5/18

struct PM_IDLst »xPM_ExLst (ULONG idl, ...);

FUNCTION
This function is used to build lists of ID numbers, that are needed
for the PM_Exclude tag.
The array of ID’s is ended by NULL.

INPUTS
id - array of ID numbers

RESULT
Returns a list of ID’s, or NULL if it ran out of memory.
You don’t really need to care about what it returns, Jjust pass it
on to PM_MakeItemA ().

SEE ALSO
PM_MakeIDListA (), PM_MakeItemA(), <libraries/pm.h>

1.7 popupmenu.library/PM_FilterIMsgA

NAME
PM_FilterIMsgA -- Handle keyboard shortcuts. (V6)
SYNOPSIS
userdata = PM_FilterIMsgA (window, menu, imsg, tags);
DO Al A2 A3 AS

userdata = PM_FilterIMsg(window, menu, imsg, tags, ...);

APTR PM_FilterIMsgA (struct Window =%, struct PopupMenu x*,
struct IntuiMessage *, struct TaglItem x);

APTR PM_FilterIMsg(struct Window %, struct PopupMenu x*,
struct IntuiMessage %, ULONG, ...);

FUNCTION
This function handles keyboard shortcuts.
It compares ’'imsg’ against IDCMP_VANILLAKEY, if one is found, that
item’s UserData is returned, or the MenuHandler hook is called.
Remember to set IDCMP_VANILLAKEY for the window(s) you use for user

input.
INPUTS
window = pointer to the parent window.
menu = pointer to a popup menu.
imsg = IntuiMessage to be filtered.

TAGS
Accepts the same tags as PM_OpenPopupMenuA, in addition to those
listed below:

PM_AutoPullDown - (BOOL) Set this to TRUE if you want a pulldown
menu opened automatically, when the user presses
RMB.

You will have to use WFLG_RMBTRAP and

Testfile 6/18

IDCMP_MOUSEBUTTONS to get it working.

RESULT
The UserData of the item that was selected, or NULL.
If MultiSelect 1is enabled, this result should not be used, since it
would not be reliable when the user selects several items.
(The user can ofcourse only select more than one item if the tag
PM_AutoPullDown is used)

SEE ALSO
PM_OpenPopupMenuA ()

1.8 popupmenu.library/PM_Findltem

NAME

PM_FindItem -- Find an item in a popupmenu list. (V3)
SYNOPSIS

item = PM_FindItem (menu, id);

DO Al D1

struct PopupMenu *PM_FindItem(struct PopupMenu =*, ULONG) ;

FUNCTION
Find the pointer to an item using the ID number.

INPUTS
menu = pointer to a popup menu list.
id ID number (PM_ID).

RESULT
Returns a pointer to the found item, or NULL if unsuccessful.

SEE ALSO

1.9 popupmenu.library/PM_FreePopupMenu

NAME
PM_FreePopupMenu —-- Free a menu list created by PM_MakeMenuA ()
PM_MakeMenuA} .

SYNOPSIS
PM_FreePopupMenu (popupmenu) ;
al

void PM_FreePopupMenu (struct PopupMenu =) ;

FUNCTION
This function is used to free the list of menu items created by
PM_MakeItemA (), and PM_MakeMenuA () .

INPUTS

Testfile 7/18

popupmenu - pointer to a popup menu to free.
SEE ALSO
PM_MakeItemA (), PM_MakeMenuA ()

1.10 popupmenu.library/PM_GetltemAttrsA

NAME

PM_GetItemAttrsA —-- Get attribute values for an object. (V3)
SYNOPSIS

result = PM_GetItemAttrsA(item, tags);

DO A2 Al

ULONG PM_GetItemAttrsA(struct PopupMenu *, struct Tagltem x);
result = PM_GetItemAttrs(item, tagl, ...);
ULONG PM_GetItemAttrs (struct PopupMenu *, ULONG, ...);
FUNCTION
Used to get attributes from an item.
item can be directly taken from PM _FindItem() as the input is
checked against NULL pointers.
EXAMPLE
struct PopupMenu *menu;

struct Image ximage;
BOOL checked;

/+ Initialize the menu x/

PM_GetItemAttrsA(PM_FindItem(menu, itemid),
PM_SelectImage, &image,

PM_Checked, &checked,
TAG_DONE) ;
INPUTS
item = pointer to a popup menu item.
tags = array of Tagltem structures with attribute/value pairs.
RESULT

Returns the number of successfully copied attributes.

SEE ALSO
PM_FindItem()

1.11 popupmenu.library/PM_GetVersion

Testfile

8/18

NAME

PM_GetVersion —-- Get the library version string (V9)
SYNOPSIS

version = PM_GetVersion();

DO

STRPTR PM_GetVersion (void);
FUNCTION
This function is used by the preferences program to find out which

settings that are supported by the library.

RESULT
A version string containing version number & date.

EXAMPLE
puts (PM_GetVersion());

Outputs the string:
"SVER: popupmenu.library 9.0 (01.05.00)"

1.12 popupmenu.library/PM_InsertMenultemA

NAME

PM_InsertMenultemA —-- Insert menu items in a menu after creation.
SYNOPSIS

success = PM_InsertMenultemA (menu, tags);

a0 al
success = PM_InsertMenultem(menu, tagl, ...);
LONG PM_InsertMenultemA (struct PopupMenu *, struct Tagltem x);
LONG PM_InsertMenultem(struct PopupMenu =%, ULONG tagl, ...);
FUNCTION

This function inserts one or more items in a menu, after it has
been created with PM_MakeMenuA () .

INPUTS
menu — pointer to the menu that will recieve the new items.
tags - see below.

RETURNS

The function returns the number of succesfully inserted items.
(0 1if none was inserted)

TAGS
PM_Insert_TItem (struct PopupMenu =)
This tag inserts the item pointed to by ti_Data
at the position formerly given by one of the

Testfile

9/18

tags below. (see example)

PM_InsertAfter (struct PopupMenu =x)
Insert the item(s) after this item.

PM_InsertAfterID (ULONG)

Insert the item(s) after an item with this ID.

PM_InsertSub_First (struct PopupMenu =)

PM_InsertSub_Last (struct PopupMenu x)
Insert the item(s) at the top/bottom of the
submenu pointed to by ti_Data.

EXAMPLE

PM_InsertMenultem (mypopupmenu,

PM_InsertAfterID, 100,

PM_Insert_TItem, PM_MakeItem(
PM_Title, "New item",
TAG_DONE),

PM_InsertSub_First, a_submenu,

PM_Insert_Item, another_new_item,
TAG_DONE) ;
SEE ALSO
PM_RemoveMenultem (), PM_MakeMenuA (), <libraries/pm.h>

1.13 popupmenu.library/PM_ItemChecked

NAME

PM_ItemChecked -- Find out if an item is checked. (V3)
SYNOPSIS

item = PM_ItemChecked (menu, id);

DO Al D1

BOOL PM_TItemChecked(struct PopupMenu =, ULONG) ;

FUNCTION
Fast way to find out if an item is checked using the item ID.

INPUTS
menu = pointer to a popup menu list.
id ID number (PM_ID).

RESULT
TRUE (-1L) if the item is checked, FALSE (0L) if not checked,
PMERR (-5L) if the ID was not found in the list.

1.14 popupmenu.library/PM_LayoutMenuA

Testfile

10/18

NAME

PM_LayoutMenuA -- Prepare the menu for opening. (V9)
SYNOPSIS

success = PM_LayoutMenuA (window, menu, tags);

DO AQ Al A2

success = PM_LayoutMenu (window, menu, tagl, ...);

BOOL PM_LayoutMenuA (struct Window x, struct PopupMenu x,
struct Tagltem x*);

BOOL PM_LayoutMenu (struct Window %, struct PopupMenu %, ULONG, ...);

FUNCTION
Loads and remaps images and lays out the menu. Use with large menus
that will only be used on one screen. This will speed up the menu

significantly.
INPUTS
window = window on the screen you want to open the menu on later. The

window must remain open until the menu is freed.

You must not attempt to open the menu on another screen than
the one the window is on. It may work sometimes, but don’t
count on it.

menu = pointer to a popup menu list (PM_MakeMenud).
TAGS

No tags have been defined yet.
RESULT

TRUE (-1L) if succesful, FALSE (0L) otherwise. Even if the function
would fail, you can still safely call PM_OpenPopupMenu () .

1.15 popupmenu.library/PM_MakelDListA

NAME

PM_MakeIDListA —-- Create a list of ID’s for exclusion/inclusion.
SYNOPSIS

list = PM_MakeIDListA (taglist);

do al

struct PM_IDLst *PM_MakeIDListA(struct Tagltem =xtags);

list = PM_MakeIDList (tagl, ...);
struct PM_IDLst *PM_MakeIDList (ULONG, ...);
FUNCTION

This function is used to create a list of ID’s that is used to
tell wich items an item should include, exclude, reflect or
inverse reflect.

Testfile

11/18

INPUTS
taglist - pointer to a taglist.

TAGS
PM_ExcludelID (ULONG) ID of a item that should be unselected when
when this item is selected.
PM_IncludelID (ULONG) ID of a item that should be selected when
when this item is selected.
PM_ReflectID (ULONG) ID of a item that should copy the state
of this item, when it gets selected/unselected.
PM_InverselD (ULONG) ID of a item that should copy the inverse
state of this item, when it gets selected/
unselected.
Useful if you want to make sure only one of two
items is selected at a time.
RETURNS
Returns a pointer to a list of id’s if successful.
SEE ALSO

PM_MakeItemA (), PM_ExLstA(), <libraries/pm.h>

1.16 popupmenu.library/PM_MakeltemA

NAME

PM_MakeItem —- Create a new menu item.
SYNOPSIS

menu = PM_MakeItemA (taglist);

do al

struct PopupMenu *PM MakelItemA (struct Tagltem =xtags);

menu = PM_MakeItem(tagl, ...);

struct PopupMenu =*PM_MakeItem (ULONG, ...);

FUNCTION
This function is used to create a new menu item to be passed to
PM_MakeMenuA (), for linking.

INPUTS
taglist - pointer to a taglist listing your menu items.

TAGS
PM_Title (STRPTR) Pointer to the menu text you want.
PM_UserData (ULONG) Anything of your choice, can be used to

identify the item when it is selected. The value
stored here will be returned from PM_OpenPopupMenuA ()
when the user selects this item.

Testfile

12/18

PM_1ID (ULONG) An ID number, only needed if you want to
be able to read or change the attributes of this
item later. (for example, to find out if an item
is checked)

PM_Sub (struct PopupMenu %) A pointer to a menu list
returned from PM_MakeMenuA (). The item
will automatically get an arrow to the right
showing that it has a sub menu.

PM_Flags (ULONG) Used internally. Do not use this tag!

PM_NoSelect (BOOL) Make the item unselectable.
If this attribute is set to FALSE for items with
submenus, they will become selectable. Note that
this is not currently (V8) reversable.

PM_FillPen (BOOL) Draw the item title in FILLPEN.
PM_Checkit (BOOL) Leave some space for a checkmark.
PM_Checked (BOOL) Put a checkmark to the left of the item.
PM_Italic (BOOL) Draw the text in italic.

PM_Bold (BOOL) Make the text bold.

PM_Underlined (BOOL) Underline the text.

PM_WideTitleBar (BOOL)

PM_TitleBar (BOOL) Draw a horizontal separator instead of text.
PM_ShadowPen (BOOL) Draw the text in SHADOWPEN color.
PM_ShinePen (BOOL) Draw the text in SHINEPEN color.

PM_Exclude (struct PM_IDLst %) List of items to be selected

or unselected when this item gets selected.
The list should be created with PM_MakeIDListA().

PM_Disabled (BOOL) Makes the item unselectable, and draws a
disable pattern over the item.

PM_ImageSelected (struct Image x)

PM_ImageUnselected (struct Image x*)
Specifies an image to be rendered under the item
title.

PM_TIconSelected (struct Image x*)

PM_TIconUnselected (struct Image x)
Specifies an image to be rendered to the left of the
item title.

PM_AutoStore (BOOL) A pointer to a BOOL that will reflect the
state of the checkmark. The best way to find out
if an item is checked or not.

Testfile

13/18

PM_TextPen

PM_Shadowed

PM_CommKey

PM_ColourBox

PM_SubConstruct

PM_SubDestruct

PM_Hidden

PM_TitleID

PM_Object

PM_Members

PM_LayoutMode

(ULONG) A pen number for the text. You are
responsible for allocating/deallocating a pen
yourself.

(BOOL) Give the the text a shadow using SHADOWPEN.

(STRPTR) Keyboard shortcut for this item.

Only the first character will be used. This is a
string pointer just to make it easier to use locale
strings for the shortcuts.

(ULONG) Draws a filled rectangle in using the
specified pen.

The box will be drawn at the end of the line in
PM_CheckIt items, and at the beginning in other items.

(struct Hook x)
This hook will be called before the submenu pointed to
by PM_Sub is opened. Using this hook you can create the
menu Jjust before it is opened, and show directory
contents etc in the menu. Remember to always free the
pm—>Sub pointer before replacing it with the new one.
The hook function will recieve a pointer to the hook
structure in A0 and a pointer to the selected (parent)
menuitem in A2.

(struct Hook x)

This hook is called after the submenu has been closed,
and is typically used when you need to free user data.
The hook function will recieve a pointer to the hook
structure in A0 and a pointer to the parent menuitem
in A2. (NOT the submenu!)

(BOOL)
Setting this tag to TRUE will prevent the item from
being drawn.

(ULONG)
Locale string ID. Will be passed to the GetString
hook. (see PM_OpenPopupMenuA ()) .

(Object)
A BOOPSI object should be used to render this item.

(PopupMenu x)

Turns this item into a group, and adds the objects
pointed to by ti_Data. The list of objects are
created just like a (sub)menu with PM_MakeMenuA () .
The default layout mode is PML_Horizontal.

(ULONG)
Layout method (applies only to group items).
Available layout methods are:

PML_Horizontal - Items are laid out horizontally.
PML_Vertical - Items are laid out vertically.

Testfile 14/18

RETURNS
Returns a pointer to an item if successful.

SEE ALSO
PM_MakeMenuA (), PM_MakeIDListA(), PM_ExLstA(), PM_OpenPopupMenuA ()

1.17 popupmenu.library/PM_MakeMenuA

NAME

PM_MakeMenu -- Create a new menu list.
SYNOPSIS

menu = PM_MakeMenuA (taglist);

do al

struct PopupMenu =*PM_MakeMenuA (struct Tagltem =*tags);
menu = PM_MakeMenu(tagl, ...);
struct PopupMenu =*PM_MakeMenu (ULONG, ...);
FUNCTION
This function is used to link menu items returned by

PM_MakeItemA () .

INPUTS
taglist - pointer to a taglist listing your menu items.

TAGS

PM_Item - pointer to a menuitem returned from PM MakeItemA () .
RETURNS

Returns a pointer to a list of items if successful.
SEE ALSO

PM_MakeItemA ()

1.18 popupmenu.library/PM_OpenPopupMenuA

NAME
PM_OpenPopupMenuA —-- Open a popup menu.
SYNOPSIS
userdata = PM_OpenPopupMenuA (prevwnd, taglist);
do al a2

ULONG PM_OpenPopupMenuA (struct Window sprevwnd, struct Tagltem xtags);

userdata = PM_OpenPopupMenu (prevwnd, tagl, ...);

Testfile

15/18

ULONG PM_OpenPopupMenu (struct Window =%, ULONG, ...);

FUNCTION
This function is used to open a popup menu based on an item list
created with PM_MakeMenuA ()

INPUTS

prevwnd - pointer to parent window,
and other drawing attributes.

taglist - pointer to a taglist of menu options.

TAGS

PM_Menu

PM_RecessSelected

PM_WideSelectBar
PM_Compact
PM_SubMenuTimer
PM_0OldLook
PM_SameHeight
PM_CheckMark
PM_ExcludeMark
PM_SubMenuMark
PM_SmartRefresh

PM_Left

PM_Top

PM_Code
PM_PullDown

PM_MenuHandler

PM_Right

PM_Bottom

PM_CenterScreen

PM_UseLMB

PM_LocaleHook

(struct PopupMenu x*)

used to find out screen,

created by PM_MakeMenuA() .

OBSOLETE!
OBSOLETE!
OBSOLETE!
OBSOLETE!
OBSOLETE!
OBSOLETE!
OBSOLETE!
OBSOLETE!
OBSOLETE!
OBSOLETE!

(ULONG)

Horizontal position of the menu,

to the menus left edge. (V3)

(ULONG) Vertical position of the menu,

to the menus top edge. (V3)

OBSOLETE!

(BOOL)

(struct Hook =)

(ULONG)

to the menus right edge.

(ULONG) Vertical position of the menu,
to the menus bottom edge.

(BOOL)

(BOOL)

opened with LMB.

(struct Hook x)

"GetString’ hook used to get localized strings.
The hook function will recieve a pointer to the
menu item (struct PopupMenu x*)

Center the menu on the screen.

Turn the menu into a pulldown menu.

Menu handler function

Horizontal position of the menu,

(V7.3)

(V7.3)

Reverses the function of the mouse
Left button will be used to select items,
button to select multiple items.
required when multiselect is used,

(V7.3)

This tag

font

Pointer to a menu list

relative

relative

(hook) .

relative

relative

(V7.3)

buttons.

and right

is only
and the menus is

in A2. A pointer

(V5.1)

Testfile

16/18

to the Hook structure will be in A0, and an APTR

pointer ("pointer to pointer") will be in Al.
At the first location in this array is the string
ID stored.
AQ0. (V9)
PM_ForceFont (struct TextFont =)
Render the menus using this font only. (V9)
PM_HintBox (BOOL)
Make the menu dissappear when the mouse is moved.
Intended for displaying "ToolTips". (Like the

Help Bubbles in MUI, only they don’t look like
bubbles, and you have to handle the opening
yourself. (V9)

RETURNS
Returns the value of UserData of the selected item, if no item
was selected, NULL is returned.

SEE ALSO
PM_MakeMenuA ()

1.19 popupmenu.library/PM_ReloadPrefs

NAME
PM_ReloadPrefs —-- Reload preferences. (V9)

SYNOPSIS
PM_ReloadPrefs();

void PM_ReloadPrefs (void) ;

FUNCTION
This function is used by the preferences program to tell the library
to reload the settings file. ("ENV:popupmenu.cfg")

1.20 popupmenu.library/PM_RemoveMenultem

NAME

PM_RemoveMenultem —-- Remove a menu item.
SYNOPSIS

item = PM_RemoveMenultem (menu, item);

do a0 al

struct PopupMenu *PM_RemoveMenultem (struct PopupMenu =,
struct PopupMenu x);

FUNCTION
This function removes an item from a popup menu.

Testfile 17/18

The removed item is NOT freed, you MUST free this item with
PM_FreePopupMenu (), unless you plan to reuse in another menu.
You may, for example, insert this item in another menu or at
another position in this menu, using the function
PM_InsertMenultemA (). (but then ofcourse, you MUST NOT free the
item)

INPUTS
menu — pointer to the holds the item to be removed.
item - pointer to the item to be removed.

RETURNS
Returns a pointer to the removed item, or NULL if the item was not
present in the specified menu.
You are responsible for freeing this item!

SEE ALSO
PM_MakeMenuA (), PM_FreePopupMenu(), PM_InsertMenultemA ()

1.21 popupmenu.library/PM_SetltemAtirsA

NAME

PM_SetItemAttrsA —-- Specify attribute values for an object. (V3)
SYNOPSIS

result = PM_SetItemAttrsA(item, tags);

DO A2 Al

ULONG PM_SetItemAttrsA(struct PopupMenu *, struct Tagltem x);

result = PM_SetItemAttrs (item, tagl, ...);
ULONG PM_SetItemAttrs (struct PopupMenu %, ULONG, ...);
FUNCTION

Specifies a set of attribute/value pairs with meaning as
defined in libraries/pm.h.
item can be directly taken from PM_FindItem as the input is
checked against NULL pointers.

EXAMPLE

struct PopupMenu *menu;
/* Initialize the menu... */

PM_SetItemAttrsA(PM_FindItem(menu, itemid),

PM_Checkit, TRUE,
PM_Checked, TRUE,
TAG_DONE) ;

INPUTS
item = pointer to a popup menu item.

Testfile 18/18

tags = array of Tagltem structures with attribute/value pairs.

RESULT
Returns the number of successfully changed attributes.

	Testfile
	Table Of Contents
	popupmenu.library/--background--
	popupmenu.library/--hooks--
	popupmenu.library/PM_AbortHook
	popupmenu.library/PM_AlterState
	popupmenu.library/PM_ExLstA
	popupmenu.library/PM_FilterIMsgA
	popupmenu.library/PM_FindItem
	popupmenu.library/PM_FreePopupMenu
	popupmenu.library/PM_GetItemAttrsA
	popupmenu.library/PM_GetVersion
	popupmenu.library/PM_InsertMenuItemA
	popupmenu.library/PM_ItemChecked
	popupmenu.library/PM_LayoutMenuA
	popupmenu.library/PM_MakeIDListA
	popupmenu.library/PM_MakeItemA
	popupmenu.library/PM_MakeMenuA
	popupmenu.library/PM_OpenPopupMenuA
	popupmenu.library/PM_ReloadPrefs
	popupmenu.library/PM_RemoveMenuItem
	popupmenu.library/PM_SetItemAttrsA

